Nonlinear gradient estimates for elliptic double obstacle problems with measure data
نویسندگان
چکیده
We study quasilinear elliptic double obstacle problems with a variable exponent growth when the right-hand side is measure. A global Calder\'{o}n-Zygmund estimate for gradient of an approximable solution obtained in terms associated obstacles and given measure, identifying minimal requirements regularity estimate.
منابع مشابه
Renormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کاملLorentz estimates for the gradient of weak solutions to elliptic obstacle problems with partially BMO coefficients
We prove global Lorentz estimates for variable power of the gradient of weak solution to linear elliptic obstacle problems with small partially BMO coefficients over a bounded nonsmooth domain. Here, we assume that the leading coefficients are measurable in one variable and have small BMO semi-norms in the other variables, variable exponents p(x) satisfy log-Hölder continuity, and the boundarie...
متن کاملOn Mixed Error Estimates for Elliptic Obstacle Problems
In this paper, we establish sharp error estimates of residual type for nite element approximation to elliptic obstacle problems. The estimates are of mixed nature, which are neither of a pure a priori form nor of a pure a posteriori form but instead they are combined by an a priori part and an a posteriori part. The key ingredient in our derivation for the mixed error estimates is the use of a ...
متن کاملResidual type a posteriori error estimates for elliptic obstacle problems
under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper, we give an a posteriori error estimates with constitutive law for some obstacle problem. The error estimator involves some parameter ε appeared in some penalized equation.
متن کاملNonlinear degenerate elliptic equations with measure data
In this paper we prove existence results for some nonlinear degenerate elliptic equations with data in the space of bounded Radon measures and we improve the results already obtained in Cirmi G.R., On the existence of solutions to non-linear degenerate elliptic equations with measure data, Ricerche Mat. 42 (1993), no. 2, 315–329.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2021
ISSN: ['1090-2732', '0022-0396']
DOI: https://doi.org/10.1016/j.jde.2021.05.035